Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Nanomedicine ; 57: 102744, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460653

RESUMO

We recently prepared pH-responsive HPMA copolymer conjugates of bradykinin (P-BK), which release BK in response to the acidic tumor microenvironment, and found that administration of P-BK increased the tumor accumulation and therapeutic efficacy of nanomedicine. Because the release of BK from P-BK determines its onset of action, P-BKs with different release rates were prepared, and their properties were evaluated. The release kinetics were significantly altered by substitution proximal to hydrazone bond, release constant of methyl-substituted P-BK (P-MeBK) was approximately 4- and 80-fold higher than that of cyclopropyl-substituted P-BK (P-CPBK) and phenyl-substituted P-BK (P-PhBK). None of the P-BKs were active, but the release of BK restored their BK-like activity. Pre-administration of the P-BKs increased the tumor accumulation of nanomedicine in C26 tumor-bearing mice by 2- and 1.4-fold for P-MeBK and P-PhBK at 3 and 6 h. Altogether, this study provides insights into the design of pH-responsive nanodrugs with the desired release properties to target acidic lesions such as cancer and inflammation.


Assuntos
Neoplasias , Polímeros , Animais , Camundongos , Polímeros/química , Doxorrubicina/química , Bradicinina , Nanomedicina , Concentração de Íons de Hidrogênio , Neoplasias/tratamento farmacológico , Microambiente Tumoral
2.
Blood Adv ; 8(6): 1345-1358, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38190613

RESUMO

ABSTRACT: Adult T-cell leukemia/lymphoma (ATL) is triggered by infection with human T-cell lymphotropic virus-1 (HTLV-1). Here, we describe the reprogramming of pyrimidine biosynthesis in both normal T cells and ATL cells through regulation of uridine-cytidine kinase 2 (UCK2), which supports vigorous proliferation. UCK2 catalyzes the monophosphorylation of cytidine/uridine and their analogues during pyrimidine biosynthesis and drug metabolism. We found that UCK2 was overexpressed aberrantly in HTLV-1-infected T cells but not in normal T cells. T-cell activation via T-cell receptor (TCR) signaling induced expression of UCK2 in normal T cells. Somatic alterations and epigenetic modifications in ATL cells activate TCR signaling. Therefore, we believe that expression of UCK2 in HTLV-1-infected cells is induced by dysregulated TCR signaling. Recently, we established azacitidine-resistant (AZA-R) cells showing absent expression of UCK2. AZA-R cells proliferated normally in vitro, whereas UCK2 knockdown inhibited ATL cell growth. Although uridine and cytidine accumulated in AZA-R cells, possibly because of dysfunction of pyrimidine salvage biosynthesis induced by loss of UCK2 expression, the amount of UTP and CTP was almost the same as in parental cells. Furthermore, AZA-R cells were more susceptible to an inhibitor of dihydroorotic acid dehydrogenase, which performs the rate-limiting enzyme of de novo pyrimidine nucleotide biosynthesis, and more resistant to dipyridamole, an inhibitor of pyrimidine salvage biosynthesis, suggesting that AZA-R cells adapt to UCK2 loss by increasing de novo pyrimidine nucleotide biosynthesis. Taken together, the data suggest that fine-tuning pyrimidine biosynthesis supports vigorous cell proliferation of both normal T cells and ATL cells.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Pirimidinas , Adulto , Humanos , Uridina/metabolismo , Proliferação de Células , Citidina , Nucleotídeos de Pirimidina , Receptores de Antígenos de Linfócitos T , Linfócitos T/metabolismo
3.
EJHaem ; 4(3): 733-737, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37601876

RESUMO

Viral cell-free DNA (cfDNA) in plasma has been widely evaluated for detecting cancer and monitoring disease in virus-associated tumors. We investigated whether the amount of cfDNA of human T-cell leukemia virus type 1 (HTLV-1) correlates with disease state in adult T-cell leukemia-lymphoma (ATL). HTLV-1 cfDNA in aggressive ATL was significantly higher than that in indolent ATL and asymptomatic carriers. Notably, patients with lymphoma type represented higher HTLV-1 cfDNA amount than chronic and smoldering subtypes, though they had no abnormal lymphocytes in the peripheral blood. HTLV-1 cfDNA can be a universal biomarker that reflects the expansion of ATL clones.

4.
J Funct Biomater ; 14(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37504835

RESUMO

Arginine-rich membrane-permeable peptides (APPs) can be delivered to cells by forming complexes with various membrane-impermeable bioactive molecules such as proteins. We recently reported on the preparation of guanidinylated chitosan (GCS) that mimics arginine peptides, using chitosan, a naturally occurring cationic polysaccharide, and confirmed that it enhances protein permeability in an in vitro cell system. However, studies on the in vivo safety of GCS are not available. To address this, we evaluated the in vivo safety of GCS and its translocation into the gastrointestinal tract in rats after a single oral administration of an excessive dose (500 mg/kg) and observed changes in body weight, major organ weights, and organ tissue sections for periods of up to 2 weeks. The results indicated that GCS causes no deleterious effects. The results of an oral administration of rhodamine-labeled chitosan and an evaluation of its migration in the gastrointestinal tract suggested that the disappearance of rhodamine-labeled GCS from the body appeared to be slower than that of the non-dose group and pre-guanidinylated chitosan due to its mucoadhesive properties. In the future, we plan to investigate the use of GCS to improve absorption using Class III and IV drugs, which are poorly water-soluble as well as poorly membrane-permeable.

6.
BMC Cancer ; 23(1): 77, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690964

RESUMO

BACKGROUND: Precision medicine with gene panel testing based on next-generation sequencing for patients with cancer is being used increasingly in clinical practice. HER2, which encodes the human epidermal growth factor receptor 2 (HER2), is a potentially important driver gene. However, therapeutic strategies aimed at mutations in the HER2 extracellular domain have not been clarified. We therefore investigated the effect of EGFR co-targeted therapy with HER2 on patient-derived cancer models with the HER2 extracellular domain mutation E401G, based on our previous findings that this mutation has an epidermal growth factor receptor (EGFR)-mediated activation mechanism. METHODS: We generated a xenograft (PDX) and a cancer tissue-originated spheroid (CTOS) from a patient's cancer containing an amplified HER2 E401G mutation. With these platforms, we compared the efficacy of afatinib, a tyrosine kinase inhibitor having anti-HER2 and anti-EGFR activity, with two other therapeutic options: lapatinib, which has similar properties but weaker EGFR inhibition, and trastuzumab plus pertuzumab, for which evidence exists of treatment efficacy against cancers with wild-type HER2 amplification. Similar experiments were also performed with H2170, a cell line with wild-type HER2 amplification, to contrast the characteristics of these drug's efficacies against HER2 E401G. RESULTS: We confirmed that PDX and CTOS retained morphological and immunohistochemical characteristics and HER2 gene profiles of the original tumor. In both PDX and CTOS, afatinib reduced tumor size more than lapatinib or trastuzumab plus pertuzumab. In addition, afatinib treatment resulted in a statistically significant reduction in HER2 copy number at the end of treatment. On the other hand, in H2170 xenografts with wild-type HER2 amplification, trastuzumab plus pertuzumab was most effective. CONCLUSIONS: Afatinib, a dual inhibitor of HER2 and EGFR, showed a promising effect on cancers with amplified HER2 E401G, which have an EGFR-mediated activation mechanism. Analysis of the activation mechanisms of mutations and development of therapeutic strategies based on those mechanisms are critical in precision medicine for cancer patients.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Afatinib , Lapatinib , Antineoplásicos/uso terapêutico , Receptor ErbB-2/metabolismo , Trastuzumab , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Mutação , Linhagem Celular Tumoral , Receptores ErbB/genética
8.
J Cachexia Sarcopenia Muscle ; 14(1): 553-564, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36562292

RESUMO

BACKGROUND: Targeting of the apelin-apelin receptor (Apj) system may serve as a useful therapeutic intervention for the management of chronic kidney disease (CKD)-induced skeletal muscle atrophy. We investigated the roles and efficacy of the apelin-Apj system in CKD-induced skeletal muscle atrophy. METHODS: The 5/6-nephrectomized mice were used as CKD models. AST-120, a charcoal adsorbent of uraemic toxins (8 w/w% in diet), or apelin (1 µmol/kg) was administered to CKD mice to investigate the mechanism and therapeutic potential of apelin on CKD-induced skeletal muscle atrophy. The effect of indoxyl sulfate, a uraemic toxin, or apelin on skeletal muscle atrophy was evaluated using mouse myoblast cells (C2C12 cells) in vitro. RESULTS: Skeletal muscle atrophy developed over time following nephrectomy at 12 weeks, as confirmed by a significant increase of atrogin-1 and myostatin mRNA expression in the gastrocnemius (GA) muscle and a decrease of lower limb skeletal muscle weight (P < 0.05, 0.01 and 0.05, respectively). Apelin expression in GA muscle was significantly decreased (P < 0.05) and elabela, another Apj endogenous ligand, tended to show a non-significant decrease at 12 weeks after nephrectomy. Administration of AST-120 inhibited the decline of muscle weight and increase of atrogin-1 and myostatin expression. Apelin and elabela expression was slightly improved by AST-120 administration but Apj expression was not, suggesting the involvement of uraemic toxins in endogenous Apj ligand expression. The administration of apelin at 1.0 µmol/kg for 4 weeks to CKD mice suppressed the increase of atrogin-1 and myostatin, increased apelin and Apj mRNA expression at 30 min after apelin administration and significantly ameliorated weight loss and a decrease of the cross-sectional area of hindlimb skeletal muscle. CONCLUSIONS: This study demonstrated for the first time the association of the Apj endogenous ligand-uraemic toxin axis with skeletal muscle atrophy in CKD and the utility of therapeutic targeting of the apelin-Apj system.


Assuntos
Miostatina , Insuficiência Renal Crônica , Camundongos , Animais , Apelina/farmacologia , Apelina/uso terapêutico , Apelina/metabolismo , Miostatina/metabolismo , Ligantes , Toxinas Urêmicas , Músculo Esquelético/patologia , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , RNA Mensageiro/metabolismo
9.
Blood Adv ; 7(8): 1545-1559, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36516085

RESUMO

Adult T-cell leukemia/lymphoma (ATL) is a malignancy of mature CD4+ T cells caused by human T-cell lymphotropic virus type 1 (HTLV-1)-induced T-cell transformation. After infection with HTLV-1, it takes several decades for HTLV-1 carriers to develop ATL. The prognosis of ATL remains poor despite several new agents being approved in the last few years. Recently, it has been noted that epigenetic abnormalities, both DNA methylation and trimethylation at histone H3Lys27 (H3K27me3), contribute to ATL leukemogenesis. Here, we investigated the effect of combination treatment with DNA demethylating agents (azacitidine [AZA], decitabine (DAC), and OR-2100 (OR21), which is a silylated derivative of DAC) and inhibitors of enhancer of zeste homolog 2 (EZH2) (EPZ-6438 and DS-3201b), which catalyze trimethylation of H3K27, in ATL. The combination of DAC and OR21 but not AZA with EZH inhibitors exhibited synergistic anti-ATL effects in vitro and in vivo, concomitant with DNA demethylation and reduction of H3K27me3. The combination induced gene expression reprogramming. Dual-specificity phosphatase 5 (DUSP5), an extracellular signal-regulated kinase (ERK)-specific phosphatase, was identified as a key molecule that mediated the inhibitory effect of combination treatment by inactivating the ERK signaling pathway. DUSP5 was downregulated by DNA methylation and H3K27me3 accumulation in the promoter region in HTLV-1-infected cells from patients with ATL during ATL leukemogenesis. The present results demonstrate that dual targeting of aberrant DNA and histone methylation synergistically suppresses tumor cell growth by restoring DUSP5, and that dual targeting of aberrant DNA and histone methylation is a feasible therapeutic approach for ATL.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Neoplasias , Adulto , Humanos , Histonas/metabolismo , Leucemia-Linfoma de Células T do Adulto/tratamento farmacológico , Leucemia-Linfoma de Células T do Adulto/genética , Vírus Linfotrópico T Tipo 1 Humano/genética , Neoplasias/genética , Metilação de DNA , Azacitidina/farmacologia , DNA/metabolismo
10.
Biosensors (Basel) ; 12(10)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36290979

RESUMO

One of the main indices of the quality of water is the biochemical oxygen demand (BOD). A little over 40 years have passed since the practical application of the first microbial sensor for the determination of BOD, presented by the Japanese professor Isao Karube. This time span has brought new knowledge to and practical developments in the use of a wide range of microbial cells based on BOD biosensors. At present, this field of biotechnology is becoming an independent discipline. The traditional BOD analysis (BOD5) has not changed over many years; it takes no less than 5 days to carry out. Microbial biosensors can be used as an alternative technique for assessing the BOD attract attention because they can reduce hundredfold the time required to measure it. The review examines the experience of the creation and practical application of BOD biosensors accumulated by the international community. Special attention is paid to the use of multiple cell immobilization methods, signal registration techniques, mediators and cell consortia contained in the bioreceptor. We consider the use of nanomaterials in the modification of analytical devices developed for BOD evaluation and discuss the prospects of developing new practically important biosensor models.


Assuntos
Técnicas Biossensoriais , Oxigênio , Oxigênio/análise , Análise da Demanda Biológica de Oxigênio , Técnicas Biossensoriais/métodos , Água/análise
11.
J Biol Chem ; 298(7): 102137, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35714766

RESUMO

Upregulation of Notch3 expression has been reported in many cancers and is considered a marker for poor prognosis. Hypoxia is a driving factor of the Notch3 signaling pathway; however, the induction mechanism and role of hypoxia-inducible factor-1α (HIF-1α) in the Notch3 response are still unclear. In this study, we found that HIF-1α and poly [ADP-ribose] polymerase 1 (PARP-1) regulate Notch3 induction under hypoxia via a noncanonical mechanism. In the analyzed cancer cell lines, Notch3 expression was increased during hypoxia at both the mRNA and protein levels. HIF-1α knockdown and Notch3 promoter reporter analyses indicated that the induction of Notch3 by hypoxia requires HIF-1α and also another molecule that binds the Notch3 promoter's guanine-rich region, which lacks the canonical hypoxia response element. Therefore, using mass spectrometry analysis to identify the binding proteins of the Notch3 promoter, we found that PARP-1 specifically binds to the Notch3 promoter. Interestingly, analyses of the Notch3 promoter reporter and knockdown of PARP-1 revealed that PARP-1 plays an important role in Notch3 regulation. Furthermore, we demonstrate that PARP inhibitors, including an inhibitor specific for PARP-1, attenuated the induction of Notch3 by hypoxia. These results uncover a novel mechanism in which HIF-1α associates with PARP-1 on the Notch3 promoter in a hypoxia response element-independent manner, thereby inducing Notch3 expression during hypoxia. Further studies on this mechanism could facilitate a better understanding of the broader functions of HIF-1α, the roles of Notch3 in cancer formation, and the insights into novel therapeutic strategies.


Assuntos
Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia , Poli(ADP-Ribose) Polimerase-1 , Hipóxia Celular , Técnicas de Silenciamento de Genes , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Receptor Notch3/metabolismo
12.
PLoS One ; 17(3): e0266112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35358259

RESUMO

INTRODUCTION: Clinical sequencing has provided molecular and therapeutic insights into the field of clinical oncology. However, despite its significance, its clinical utility in Japanese patients remains unknown. Here, we examined the clinical utility of tissue-based clinical sequencing with FoundationOne® CDx and FoundationOne® Heme. Between August 2018 and August 2019, 130 Japanese pretreated patients with advanced solid tumors were tested with FoundationOne® CDx or FoundationOne® Heme. RESULTS: The median age of 130 patients was 60.5 years (range: 3 to 84 years), and among them, 64 were males and 66 were females. Major cancer types were gastrointestinal cancer (23 cases) and hepatic, biliary, and pancreatic cancer (21 cases). A molecular tumor board had been completed on all 130 cases by October 31, 2019. The median number of gene alterations detected by Foundation testing, excluding variants of unknown significance (VUS) was 4 (ranged 0 to 21) per case. Of the 130 cases, one or more alterations were found in 123 cases (94.6%), and in 114 cases (87.7%), actionable alterations with candidates for therapeutic agents were found. In 29 (22.3%) of them, treatment corresponding to the gene alteration was performed. Regarding secondary findings, 13 cases (10%) had an alteration suspected of a hereditary tumor. Of the 13 cases, only one case received a definite diagnosis of hereditary tumor. CONCLUSIONS: Our study showed that clinical sequencing might be useful for detecting gene alterations in various cancer types and exploring treatment options. However, many issues still need to be improved.


Assuntos
Predisposição Genética para Doença , Neoplasias Pancreáticas , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Criança , Pré-Escolar , Feminino , Heme , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias Pancreáticas/genética , Adulto Jovem
13.
Inflammation ; 45(4): 1668-1679, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35211862

RESUMO

Chronic granulomatous disease (CGD) is a primary immunodeficiency wherein phagocytes are unable to produce reactive oxygen species (ROS) owing to a defect in the nicotinamide adenine dinucleotide phosphate oxidase (NADPH) complex. Patients with CGD experience bacterial and fungal infections and excessive inflammatory disorders. Bone marrow transplantation and gene therapy are theoretically curative; however, residual pathogenic components cause inflammation and/or organic damage in patients. Moreover, antibiotic treatments may not help in preventing excessive inflammation due to the residual presence of fungal cell wall ß-glucan. Thus, better treatment strategies against CGD are urgently required. Polyethylene glycol-conjugated recombinant porcine D-amino acid oxidase (PEG-pDAO) supplies ROS to defective NADPH oxidase in neutrophils of patients with CGD, following which the neutrophils regain bactericidal activity in vitro. In this study, we employed an in vivo nonviable Candida albicans (nCA)-induced lung inflammation model of gp91-phox knockout CGD mice and supplied novel PEG conjugates of Fusarium spp. D-amino acid oxidase (PEG-fDAO), as it exhibits higher enzyme activity than PEG-pDAO. The body weight, lung weight, and lung pathology were evaluated using three experimental strategies with the in vivo lung inflammation model to test the efficacy of the ROS-generating enzyme replacement therapy with PEG-fDAO. The lung weight and pathological findings suggest the condition was ameliorated by administration PEG-fDAO, followed by intraperitoneal injection of D-phenylalanine or D-proline. Although a more precise protocol is essential, these data reveal the targeted delivery of PEG-fDAO to the nCA-induced inflammation site and show that PEG-fDAO can be used to treat inflammation in CGD in vivo.


Assuntos
Doença Granulomatosa Crônica , Pneumonia , Aminoácidos , Animais , Modelos Animais de Doenças , Doença Granulomatosa Crônica/tratamento farmacológico , Humanos , Inflamação/tratamento farmacológico , Camundongos , Camundongos Knockout , NADPH Oxidases/genética , Neutrófilos , Polietilenoglicóis/farmacologia , Espécies Reativas de Oxigênio , Suínos
15.
Surg Endosc ; 36(9): 6535-6542, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35041052

RESUMO

BACKGROUND: Common bile duct stones (CBDSs) occasionally cause serious diseases, and endoscopic extraction is the standard procedure for CBDS. To prevent biliary complications, cholecystectomy is recommended for patients who present with gallbladder (GB) stones after endoscopic CBDS extraction. However, CBDS can occasionally recur. To date, the occurrence of CBDS after endoscopic CBDS extraction and subsequent cholecystectomy is not fully understood. Hence, the current study aimed to evaluate the incidence of postoperative CBDSs. METHODS: This retrospective observational study included consecutive patients who underwent postoperative endoscopic retrograde cholangiography after endoscopic CBDS extraction and subsequent cholecystectomy between April 2012 and June 2021 at our institution. After endoscopic CBDS extraction, a biliary plastic stent was inserted to prevent obstructive cholangitis. Endoscopic retrograde cholangiography was performed to evaluate postoperative CBDSs after cholecystectomy until hospital discharge. The outcomes were the incidence of postoperative CBDSs and CBDSs/sludge. Moreover, the predictive factors for postoperative CBDSs were evaluated via univariate and multivariate analyses. RESULTS: Of eligible 204 patients, 52 patients (25.5%) presented with postoperative CBDSs. The incidence rate of CBDS/sludge was 36.8% (n = 75). Based on the univariate analysis, the significant predictive factors for postoperative CBDSs were ≥ 6 CBDSs, presence of cystic duct stones, and ≥ 10 GB stones (P < 0.05). Moreover, male sex and < 60-mm minor axis in GB might be predictive factors (P < 0.10). Based on the multivariate analysis, ≥ 6 CBDSs (odds ratio = 6.65, P < 0.01), presence of cystic duct stones (odds ratio = 4.39, P < 0.01), and ≥ 10 GB stones (odds ratio = 2.55, P = 0.01) were independent predictive factors for postoperative CBDSs. CONCLUSIONS: The incidence of postoperative CBDS was relatively high. Hence, patients with predictive factors for postoperative CBDS must undergo imaging tests or additional endoscopic procedure after cholecystectomy.


Assuntos
Colecistectomia Laparoscópica , Cálculos Biliares , Colangiopancreatografia Retrógrada Endoscópica/efeitos adversos , Colangiopancreatografia Retrógrada Endoscópica/métodos , Colecistectomia/efeitos adversos , Ducto Colédoco , Cálculos Biliares/epidemiologia , Cálculos Biliares/cirurgia , Humanos , Masculino , Estudos Retrospectivos , Esgotos , Esfinterotomia Endoscópica/métodos
16.
J Clin Invest ; 131(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34907908

RESUMO

Human T cell leukemia virus type 1 (HTLV-1) mainly infects CD4+ T cells and induces chronic, persistent infection in infected individuals, with some developing adult T cell leukemia/lymphoma (ATL). HTLV-1 alters cellular differentiation, activation, and survival; however, it is unknown whether and how these changes contribute to the malignant transformation of infected cells. In this study, we used single-cell RNA-sequencing and T cell receptor-sequencing to investigate the differentiation and HTLV-1-mediated transformation of T cells. We analyzed 87,742 PBMCs from 12 infected and 3 uninfected individuals. Using multiple independent bioinformatics methods, we demonstrated the seamless transition of naive T cells into activated T cells, whereby HTLV-1-infected cells in an activated state further transformed into ATL cells, which are characterized as clonally expanded, highly activated T cells. Notably, the greater the activation state of ATL cells, the more they acquire Treg signatures. Intriguingly, the expression of HLA class II genes in HTLV-1-infected cells was uniquely induced by the viral protein Tax and further upregulated in ATL cells. Functional assays revealed that HTLV-1-infected cells upregulated HLA class II molecules and acted as tolerogenic antigen-presenting cells to induce anergy of antigen-specific T cells. In conclusion, our study revealed the in vivo mechanisms of HTLV-1-mediated transformation and immune escape at the single-cell level.


Assuntos
Transformação Celular Viral/imunologia , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Leucemia-Linfoma de Células T do Adulto/imunologia , Ativação Linfocitária , Linfócitos T/imunologia , Feminino , Produtos do Gene tax/imunologia , Antígenos HLA/imunologia , Humanos , Leucemia-Linfoma de Células T do Adulto/virologia , Masculino
17.
J Control Release ; 337: 546-556, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34375687

RESUMO

Obstructed blood flow and erratic blood supply in the tumor region attenuate the distribution and accumulation of nanomedicines in the tumor. Therefore, improvement of these conditions is crucial for efficient drug delivery. In this study, we designed and synthesized a novel N-(2-hydroxypropyl)methacrylamide (HPMA)-based copolymer conjugate of BK, which possessed adequate systemic stability and tumor-selective action required to improve the accumulation of nanomedicines in the tumor. Levulinoyl-BK (Lev-BK) was conjugated to an HPMA-based polymer via an acid-cleavable hydrazone bond (P-BK). An acid-responsive release of Lev-BK from P-BK was observed, and P-BK alone after intradermal application showed below 10% of the BK activity, thus proving a reduction in the vascular permeability activity of BK when attached to the polymer carrier. P-BK pre-treatment improved blood flow in the tumor tissue by 1.4-1.7-fold, which was maintained for more than 4 h. In addition, P-BK pre-treatment increased the tumor accumulation of pegylated liposomal doxorubicin (PLD) by approximately 3-fold. Furthermore, P-BK pre-treatment led to superior antitumor activity of PLD and significantly improved the survival of tumor-bearing mice. The release of BK from P-BK in the acidic milieu of the tumor was a prerequisite for P-BK to exert its effect, as the vascular permeability enhancing activity of P-BK was negligible. Collectively, P-BK pre-treatment improved intratumoral blood flow and augmented tumor accumulation of nanomedicine, thereby resulting in a significant suppression of tumor growth. Therefore, these findings demonstrate that P-BK is a potential concomitant drug for improving the tumor delivery of nanomedicines.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/uso terapêutico , Bradicinina/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/uso terapêutico , Portadores de Fármacos/uso terapêutico , Metacrilatos , Camundongos , Nanomedicina , Neoplasias/tratamento farmacológico , Polímeros/uso terapêutico
18.
Nihon Shokakibyo Gakkai Zasshi ; 118(3): 251-257, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-33692259

RESUMO

In a 67-year-old man, colonoscopy confirmed the presence of a 5-6mm submucosal tumor in the upper rectum (Ra);the tumor showed a tendency to grow with the size appearing to be 9-10mm at re-examination that was performed 1 year thereafter. No findings on computed tomography indicated metastasis. A neuroendocrine tumor (NET) was suspected, and endoscopic submucosal dissection was performed. The patient was pathologically diagnosed with coexistence of NETG1 and a well-differentiated adenocarcinoma. Few reports have described the coexistence of relatively low-grade NETG1 and an adenocarcinoma in the Ra, and such an occurrence is considered rare. The patient has shown no recurrence at 3 years and 2 months postoperatively.


Assuntos
Adenocarcinoma , Ressecção Endoscópica de Mucosa , Tumores Neuroendócrinos , Neoplasias Retais , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/cirurgia , Idoso , Humanos , Masculino , Recidiva Local de Neoplasia , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/cirurgia , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/cirurgia
19.
FEBS Open Bio ; 11(5): 1299-1312, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33605551

RESUMO

In human hair follicles, the hair-forming cells express 16 hair keratin genes depending on the differentiation stages. K85 and K35 are the first hair keratins expressed in cortical cells at the early stage of the differentiation. Two types of mutations in the gene encoding K85 are associated with ectodermal dysplasia of hair and nail type. Here, we transfected cultured SW-13 cells with human K85 and K35 genes and characterized filament formation. The K85-K35 pair formed short filaments in the cytoplasm, which gradually elongated and became thicker and entangled around the nucleus, indicating that K85-K35 promotes lateral association of short intermediate filaments (IFs) into bundles but cannot form IF networks in the cytoplasm. Of the K85 mutations related to ectodermal dysplasia of hair and nail type, a two-nucleotide (C1448 T1449 ) deletion (delCT) in the protein tail domain of K85 interfered with the K85-K35 filament formation and gave only aggregates, whereas a missense mutation (233A>G) that replaces Arg78 with His (R78H) in the head domain of K85 did not interfere with the filament formation. Transfection of cultured MCF-7 cells with all the hair keratin gene combinations, K85-K35, K85(R78H)-K35 and K85(delCT)-K35, as well as the individual hair keratin genes, formed well-developed cytoplasmic IF networks, probably by incorporating into the endogenous cytokeratin IF networks. Thus, the unique de novo assembly properties of the K85-K35 pair might play a key role in the early stage of hair formation.


Assuntos
Quinase 8 Dependente de Ciclina/genética , Queratinas Específicas do Cabelo/genética , Queratinas Tipo II/genética , Sequência de Aminoácidos/genética , Linhagem Celular , Quinase 8 Dependente de Ciclina/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Cabelo/metabolismo , Humanos , Filamentos Intermediários/genética , Queratinas/genética , Queratinas/metabolismo , Queratinas Específicas do Cabelo/metabolismo , Queratinas Tipo II/metabolismo , Células MCF-7 , Transfecção
20.
Curr Drug Deliv ; 18(8): 1121-1129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33550973

RESUMO

BACKGROUND: D-Amino acid oxidase (DAO) is an H2O2-generating enzyme, and tumor growth suppression by selective delivery of porcine DAO in tumors via the cytotoxic action of H2O2 has been reported. DAO isolated from Fusariumspp. (fDAO) shows much higher enzyme activity than porcine DAO, although the application of fDAO for antitumor treatment has not yet been determined. OBJECTIVE: The purpose of this study was to prepare enzymatically highly active pegylated-fDAO, and to determine whether it accumulates in tumors and exerts a potent antitumor effect in tumor- bearing mice. METHODS: Polyethylene glycol (PEG; Mw. 2000) was conjugated to fDAO to form PEGylated fDAO (PEG-fDAO). PEG-fDAO was intravenously administered into S180 tumor-bearing mice, and the body distribution and antitumor activity of PEG-fDAO was determined. RESULTS: The enzyme activity of PEG-fDAO was 26.1 U/mg, which was comparable to that of fDAO. Intravenously administered PEG-fDAO accumulated in tumors with less distribution in normal tissue except in the plasma. Enzyme activity in the tumor was 60-120 mU/g-tissue over 7-20 h after i.v. injection of 0.1 mg of PEG-fDAO. To generate the H2O2 in the tumor tissue, PEG-fDAO was intravenously administered, and then, D-phenylalanine was intraperitoneally administered after a lag time. No remarkable tumor suppression effect was observed under conditions used in this study, compared to the non-treated group. CONCLUSION: The results suggest that PEG-fDAO maintained high enzymatic activity after pegylation. Treatment with PEG-fDAO conferred high enzyme activity on tumor tissue; 3-6 fold higher than that of previously reported pDAO; however, high enzyme activity in the plasma limited repeated treatment owing to lethal toxicity, which seemingly led to poor therapeutic outcome. Overall, the use of PEG-fDAO is promising for antitumor therapy, although the suppression of DAO activity in the plasma would also be required rather than only the increase in DAO activity in the tumor for an antitumor effect.


Assuntos
Antineoplásicos , Neoplasias , Aminoácidos/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Peróxido de Hidrogênio , Camundongos , Neoplasias/tratamento farmacológico , Polietilenoglicóis/uso terapêutico , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...